Publication

Better management of production incidents in mining using multistage stochastic optimization

Mining incidents
Optimal policy
Stochastic dual dynamic programming
Risk-aversion
CVaR
Julia language
2019
Lorenzo Reus ,
Margaret Armstrong

2019, Resources Policy, 63, pp.101404

Resumo

Among the many sources of uncertainty in mining are production incidents: these can be strikes, environmental issues, accidents, or any kind of event that disrupts production. In this work, we present a strategic mine-planning model that takes into account these types of incidents, as well as random prices. When confronted by production difficulties, mines which have contracts to supply customers have a range of flexibility options including buying on the spot market, or taking material from a stockpile if they have one. Earlier work on this subject was limited in that the optimization could only be carried out for a few stages (up to 5 years) and in that it only analyzed the risk-neutral case. By using decomposition schemes, we are now able to solve large-scale versions of the model efficiently, with a horizon of up to 15 years. We consider decision trees with up to 615 scenarios and implement risk aversion using Conditional Value-at-Risk, thereby detecting its effect on the optimal policy.