Publication

Traffic assignment problem for footpath networks with bidirectional links

Traffic assignment, footpath networks, network equilibrium
2022
T. LILASATHAPORNKIT ,
W. LIU ,
M. SABERI

2022, Transportation Research Part C: Emerging Technologies, 144, pp.103905

Abstract

The estimation of pedestrian traffic in urban areas is often performed with computationally intensive microscopic models that usually suffer from scalability issues in large-scale footpath networks. In this study, we present a new macroscopic user equilibrium traffic assignment problem (UE-pTAP) framework for pedestrian networks while taking into account fundamental microscopic properties such as self-organization in bidirectional streams and stochastic walking travel times. We propose four different types of pedestrian volume-delay functions (pVDFs), calibrate them with empirical data, and discuss their implications on the existence and uniqueness of the traffic assignment solution. We demonstrate the applicability of the developed UE-pTAP framework in a small network as well as a large scale network of Sydney footpaths.